|
||||
|
By
Wikipedia,
The exploration of Mars has been an important part of the space exploration programs of the Soviet Union (later Russia), the United States, Europe, and Japan. Dozens of robotic spacecraft, including orbiters, landers, and rovers, have been launched toward Mars since the 1960s. These missions were aimed at gathering data about current conditions and answering questions about the history of Mars. The questions raised by the scientific community are expected to not only give a better appreciation of the red planet but also yield further insight into the past, and possible future, of Earth. The exploration of Mars has come at a considerable financial cost with roughly two-thirds of all spacecraft destined for Mars failing before completing their missions, with some failing before they even begin. Such a high failure rate can be attributed to the complexity and large number of variables involved in an interplanetary journey, and has led researchers to jokingly speak of The Great Galactic Ghoulwhich subsists on a diet of Mars probes. This phenomenon is also informally known as the Mars Curse.As of June 2009, there are two functioning pieces of equipment on the surface of Mars beaming signals back to Earth: the Spirit rover and the Opportunity rover. The planet MarsMars has long been the subject of human fascination. Early telescopic observations revealed color changes on the surface which were originally attributed to seasonal vegetation as well as apparent linear features which were ascribed to intelligent design. These early and erroneous interpretations led to widespread public interest in Mars. Further telescopic observations found Mars' two moons - Phobos and Deimos, the polar ice caps and the feature now known as Olympus Mons, the solar system's tallest mountain. These discoveries piqued further interest in the study and exploration of the red planet. Mars is a rocky planet, like Earth, that formed around the same time, yet with only half the diameter of Earth, and a far thinner atmosphere, it has a cold and desert-like surface. It is notable, however, that although the planet has only one quarter of the surface area of the Earth, it has about the same land area, since only one quarter of the surface area of the Earth is land. Launch windowsIn order to understand the history of the robotic exploration of Mars it is important to note that minimum-energy launch windows occur at intervals of 2.135 years, i.e. 780 days (the planet's synodic period with respect to Earth). This is a consequence of the Hohmann transfer orbit for minimum-energy interplanetary transfer. Launch windows were/will be in:
Like the outbound launch windows, minimum energy inbound (Mars to Earth) launch windows also occur at intervals of 780 (Earth) days. In addition to these minimum-energy trajectories, which occur when the planets are aligned so that the Earth to Mars transfer trajectory goes halfway around the sun, an alternate trajectory which has been proposed goes first inward toward Venus orbit, and then outward, resulting in a longer trajectory which goes about 360 degrees around the sun ("opposition-class trajectory"). Although this transfer orbit takes longer, and also requires more energy, it is sometimes proposed as a mission trajectory for human missions. Early flyby probes and orbitersEarly Soviet missionsThe Marsnik program, was the first Soviet unmanned spacecraft interplanetary exploration program, which consisted of two flyby probes launched towards Mars in October 1960, Marsnik 1 and 2 dubbed Mars 1960A and Mars 1960B (also known as Korabl 4 and Korabl 5 respectively). After launch, the third stage pumps on both Marsnik launchers were unable to develop enough thrust to commence ignition, so Earth parking orbit was not achieved. The spacecraft reached an altitude of 120 km before reentry. Mars 1962A a Mars fly-by mission, launched on October 24, 1962 and Mars 1962B a lander mission, launched in late December of the same year both failed from either breaking up as they were going into Earth orbit or having the upper stage explode in orbit during the burn to put the spacecraft into the Mars trajectory. Mars 1 (1962 Beta Nu 1) an automatic interplanetary station launched to Mars on November 1, 1962 was the first probe of the Soviet Mars probe program. Mars 1 was intended to fly by the planet at a distance of about 11,000 km and take images of the surface as well as send back data on cosmic radiation, micrometeoroid impacts and Mars' magnetic field, radiation environment, atmospheric structure, and possible organic compounds. Sixty-one radio transmissions were held, initially at two day intervals and later at 5 days in which a large amount of interplanetary data was collected. On 21 March 1963, when the spacecraft was at a distance of 106,760,000 km from Earth, on its way to Mars, communications ceased, due to failure of the spacecraft's antenna orientation system. In 1964, both Soviet probe launches, of Zond 1964A on June 4, and Zond 2 on November 30, (part of the Zond program), resulted in failures. Zond 1964A had a failure at launch, while communication was lost with Zond 2 en route to Mars after a mid-course maneuver, in early May 1965. The USSR intended to have the first artificial satellite of Mars beating the planned American Mariner 8 and Mariner 9 martian orbiters. But on May 5, 1971 Cosmos 419 (Mars 1971C), a heavy probe of Soviet Mars probe progam M-71, failed on launch. This spacecraft was designed as an orbiter only while the second and third probes of project M-71, Mars 2 and Mars 3, were multi-aimed combinations of orbiter and lander. Mariner program
In 1964, NASA's Jet Propulsion Laboratory made two attempts at reaching Mars. Mariner 3 and Mariner 4 were identical spacecraft designed to carry out the first flybys of Mars. Mariner 3 was launched on November 5, 1964, but the shroud encasing the spacecraft atop its rocket failed to open properly, and it failed to reach Mars. Three weeks later, on November 28, 1964, Mariner 4 was launched successfully on a 7½-month voyage to the red planet. Mariner 4 flew past Mars on July 14, 1965, providing the first close-up photographs of another planet. The pictures, gradually played back to Earth from a small tape recorder on the probe, showed lunar-type impact craters. NASA continued the Mariner program with another pair of Mars flyby probes, Mariner 6 and 7, at the next launch window. These probes reached the planet in 1969. During the following launch window the Mariner program again suffered the loss of one of a pair of probes. Mariner 9 successfully entered orbit about Mars, the first spacecraft ever to do so, after the launch time failure of its sister ship, Mariner 8. When Mariner 9 reached Mars, it and two Soviet orbiters (Mars 2 and Mars 3, see Mars probe program below) found that a planet-wide dust storm was in progress. The mission controllers used the time spent waiting for the storm to clear to have the probe rendezvous with, and photograph, Phobos. When the storm cleared sufficiently for Mars' surface to be photographed by Mariner 9, the pictures returned represented a substantial advance over previous missions. These pictures were the first to offer evidence that liquid water might at one time have flowed on the planetary surface. Surface missionsThe following is a map of landings on Mars.
The Soviet Union intended to beat the USA by sending landers first in the Mars probe program M-69 in 1969, but both probes of the new heavy 5-ton design, Mars 1969A and Mars 1969B, failed at launch. The first probes to impact and land on Mars were the Soviet Union's Mars 2 and Mars 3, as part of the Mars probe program M-71 in 1971. The Mars 2 and 3 probes each carried a lander, both of which failed upon landing. Mars 3 was the first successful martian lander and was able to send data and image from the surface of Mars for the first time during 20 seconds of operation. Mars 6 and Mars 7 landers on the next Soviet Mars probe program M-73 failed their missions: the first impacted on the surface while the second missed the planet. The first successful American landers were the Viking 1 and Viking 2. Mars CurseThe high failure rate of missions launched from Earth attempting to explore Mars has become informally known as the Mars Curse. The Galactic Ghoul is a fictional space monster that consumes Mars probes, a term coined in 1997 by Time Magazine journalist Donald Neff. Of 38 launches from Earth in an attempt to reach the planet, only 19 succeeded, a success rate of 50%. Twelve of the missions included attempts to land on the surface, but only seven transmitted data after landing. The majority of the failed missions occurred in the early years of space exploration and can be explained by human error and technical failure. Modern missions have an improved success rate; however, the challenge, complexity and length of the missions make it inevitable that failures will occur. The U.S. NASA Mars exploration program has had a somewhat better record of success in Mars exploration, achieving success in 13 out of 18 missions launched (a 72% success rate), and succeeding in six out of seven (an 86% success rate) of the launches of Mars landers. Manned missionsMany people have long advocated a manned mission to Mars as the next logical step for a manned space program after lunar exploration. Aside from the prestige such a mission would bring, advocates argue that humans would easily be able to outperform robotic explorers, justifying the expenses. Critics contend, however, that robots can perform better than humans at a fraction of the expense. A list of Mars Manned missions proposals is located at Manned mission to Mars. Timeline of Mars exploration
Cancelled missions
See also
External links
Text from Wikipedia is available under the Creative Commons Attribution/Share-Alike License; additional terms may apply.
Published in July 2009. Click here to read more articles related to aviation and space!
|
|
Copyright 2004-2024 © by Airports-Worldwide.com, Vyshenskoho st. 36, Lviv 79010, Ukraine Legal Disclaimer |